강의계획서

검색조건 :	
교양/교직/군사학	V
핵심교양(영역1) 글쓰기(1-①)	~
[수업시간][건물 및 교과구분 코드][검색]	조회

[영문강의계획서보기(Syllabus)]

과목명	선형계통론
과목번호	ELEC731001
학점	3.0
개설대학	전자공학부
개설학기	20162
교과구분	전공
담당교수	양정민
강의시간	화1A1B2A 화2B3A3B
강의실명	IT대학1호관(공대10호관)318 IT대학1호관(공대10호관)318
연락처/E-mail	** 통합정보시스템 로그인- 수업/성적- 수업- "강의담당교수조회"에서 확인 가능함.
면담시간	
강의언어	한국어

[강의계획서]

강의개요 및 목적

The purpose of this course is to provide the students with the basic idea of linear systems theory and modern control engineering. Main consideration is on linear algebra, state-space representations, stability analysis, c ontrollability and observability, and state feedback control and estimations. We will also study the application s of state-space methods and state feedback to various engineering systems.

교재 및 참고문헌

- Textbook:

Chi-Tsong Chen, Linear System Theory and Design, Third Edition, Oxford University Press, 1999.

- References:
- N. S. Nise, Control Systems Engineering (5th ed.), Wiley, 2008.
- R. L. Williams II and D. A. Lawrence, Linear State-Space Control Systems, Wiley, 2007.

W. J. Rugh, Linear System Theory (2nd ed.), Prentice Hall, 1996.

강의진행 방법 및 활용매체

- Writing on blackboard
- Use PC for presenting relevant materials

과제, 평가방법, 선수과목

- Midterm exam: 35%

- Final exam Term project: 35%

Homework: 20%Attendance: 10%

Total: 100%

수강에 특별히 참고할 사항

The students should be familiar with the notion of automatic control, electronic circuits, and signals and syste ms theory.

장애학생을 위한 학습지원 사항

- A. Hearing Impaired: first row priority seating, Class transcripts may also be provided.
- B.developmental Challenged: Extended Test Period.
- C. Brain lesions: Extended Test Period, Class transcripts may also be provided.
- D. Visually Impaired: Larger Font tesA. Hearing Impaired: first row priority seating, Class transcripts may als o be provided.
- B. Develpmenatlly Challenged: Extended Test Period
- C. Brain lesions: Extended Test Period, Class transcripts may also be provided
- D. Visually Impaired: Larger Font test will be provided

Other: Aid offered dependant on specific disabilities t will be provided.

Other: Aid offered dependent on specific disabilities.

[강의 내용 및 일정]

no	강의 요목 및 수업목표	과제 및 연구문제	교재 및 참고자료비고
1	Introduction - Introduction - Overview		Ch. 1
2	Review of automatic control - Transfer function - Stability - Root locus - Frequency response		Ch. 1
3	Mathematical Descriptions of Systems I - Introduction - Causality, Lumpedness, and Time-Invariance - Linear Time-Invariant (LTI) Systems		Ch. 2

	Linear Time Maning Customs	ı
	Linear Time-Varying SystemsRLC circuitsComparisons of Various Descripti	
4	Mathematical Descriptions of Systems II - Mechanical and Hydraulic Systems - Proper Rational Transfer Functions - Discrete-Time Linear Time-Invariant Systems	Ch. 2
5	Linear Algebra I - Introduction - Basis, Representation, and Orthonormalization - Linear Algebraic Equations - Similarity Transformation - Diagonal Form and Jordan Form	Ch. 3
6	Linear Algebra II - Functions of a Square Matrix Lyapunov Equation - Some Useful Formula - Quadratic Form and Positive Definiteness - Singular Value Decomposition - Norms of Matrices	Ch. 3
7	State-Space Solutions and Realizations - Introduction - General Solution of CT LTI State-Space Equations - Computer Computation of CT State-Space Equations - Equivalent State Equations - Realizations - Solution of Linear Time-Varying (LTV) Equations - Equivalent Time-Varying Equations - Time-Varying Realizations	Ch. 4
8	Midterm exam	Ch. 1~4
9	Stability - Introduction - Input-Output Stability of LTI Systems - Discrete-Time Case - Internal Stability - Lyapunov Theorem - Stability of LTV Systems	Ch. 5
10	Controllability and Observability I - Introduction - Controllability - Observability - Canonical Decomposition	Ch. 6
11	Controllability and Observability II - Conditions in Jordan-Form Equations - Discrete-Time State-Space Equations - Controllability After Sampling - LTV State-Space Equations	Ch. 6
12	Minimal Realizations and Coprime Fractions - Introduction - Implications of Coprimeness - Computing Coprime Fractions	Ch. 7

	 Balanced Realization Realizations from Markov Parameters Degree of Transfer Matrices Minimal Realizations Matrix Case Matrix Polynomial Fractions Realization from Matrix Coprime Fractions 			
13	State Feedback and State Estimators - Introduction - State Feedback - Regulation and Tracking - State Estimator - Feedback from Estimated States - State feedback—MIMO case - State Estimators—MIMO case - Feedback from Estimated States—MIMO Case	Term project proposal (TBD)	Ch. 8	
14	Pole Placement and Model Matching - Introduction - Preliminary—Matching Coefficients - Unity-Feedback Configuration-Pole Placement - Implementable Transfer Functions - MIMO Unity Feedback Systems - MIMO Model Matching—Two-Parameter Configuration		Ch. 9	
15	Final exam	Term project presentation	Ch. 1~9	

수험부정행위시, 경북대학교 수험부정행위에관한처벌규정에 의거 그 정상에 따라 수험자격박탈, 근신, 유기·무기정학, 또는 제적 처분될 수 있으니, 각별히 유의하여 주시기 바람.