| 과목명 | 자동제어 | 과목번호 | ELEC332003 | 학점 | 3-3-0 | |------------|---|------|----------------------|------|--| | 개설대학 | 전자공학부 E | 개설학기 | 20211 | 교과구분 | 전공 | | 담당교수 | 최병조 | 강의시간 | 월 2B3A3B
수 1A1B2A | 강의실명 | IT 대학 1 호관(공대 10 호관)208
IT 대학 1 호관(공대 10 호관)208 | | 연락처/E-mail | ** 통합정보시스템 로그인- 수업/성적- 수업-"강의담당교수조회"에서 확인 가능함. | | | 강의언어 | 한국어 | | 상담장소/시간 | Mon. 13:00-14:00 | | | | | | 교육목표 | (1) 창의적 문제해결 능력을 함양할 수 있는 내실있는 전공 교육 수행 (2) 자기주도적 | | | | | | (전공 및 | 학습능력을 갖추고 미래 신기술에 능동적으로 대응 가능한 공학인재 육성 (3) 통섭적 | | | | | | 교양) | 능력을 갖추고 미래 사회를 이끌어 나갈 수 있는 글로벌 리더 육성 | | | | | ## [강의계획서] ## 강의개요 The former part of the class addresses the basic principles and fundamental techniques of feedback control systems: - The concept, benefits, and potential problems of closed-loop feedback control. - Mathematical description and engineering modeling of feedback systems. and - Stability analysis using Routh-Herwitz method and root locus technique. The later part of the class focuses on the analysis and design of feedback control systems using frequency-domain techniques: - Stability analysis using Nyquist criterion and stability margins $\,$ - Bode plot construction and frequency response analysis, - Frequency respesponse-based system designs, and - Compensation design and loop gain shaping for system performance. | 핵심역량 | | | | | | 전공능력 | | | |---------------------------------------|---|----------|------|------|------|------|-------|---| | 참다
창의 | 융합 | 성찰
비판 | 탐색 | | 책임 | | 기술 태5 | Ē | | 강의목표 | | | | | | | | | | | The object of the class is to provide for students with theoretical fundamentals, engineering skills, and design techniques for general adaptation of the control theories to their own applications. | | | | | | | | | 권장선수과목 | 루 | | | | | | | | | None | | | | | | | | | | 권장후수과목 | <u></u> | | | | | | | | | None | | | | | | | | | | 평가요소(10 | 0%) | | | | | | | | | 출석 | 중간시험 | 기말시험 | 과제 | 발표 | 토론 | 안전교육 | 기타 | | | 5% | 45% | 450 | % 5' | % 0% | ó 0% | 0% | 0% |) | | 평가방법 | | | 1 | | | 1 | | | | Assingments: Homework & Projects | Grading criteria: Relative evaluation | | | | | | | | | | Prerequisite subjects: None | |--| | 교재 및 참고문헌 | | R. C. Dorf and R. H. Bishop 'Modern Control Systems' 13 th Edition, Pearson, 2017. | | 수강 참고사항 | | None | | 장애학생을 위한 학습지원사항 | | All the available means | ## [강의내용및일정] | - | | | | | |----|---|-----------|-------------|---| | no | 수업목표 및 학습내용 | 수업방법 및 매체 | 과제 및 연구문제 비 | 고 | | 1 | Chapter 1: Introduction to Control Systems | | | | | 2 | Chapter 2: Mathematical Models of Systems 2.5 Transfer Functins for Linear Systems 2.6 Block Diagram Models | | | | | 3 | Chapter 5: The Performance of Feedback Systems 5.1 Introduction 5.3 Performance of Second-Order System | | | | | 4 | Chapter 5: The Performance of Feedback Systems 5.6 Steady-State Error | | | | | | |
 | | |----|--|------|--| | 5 | Chapter 6: The Stability of Linear Systems 6.1 Introduction 6.2 Bounded-Input Bounded-Output Stability | | | | 6 | Chapter 6: The Stability of Linear Systems 6.3 Routh-Hurwitz Method | | | | 7 | Chapter 7: The Root Locus Method 7.1 Introduction 7.3 Root Locus Construction Rules | | | | 8 | Chapter 7: The Root Locus Method 7.4 Features of Root Locus 7.7 Root Locus Design Method | | | | 9 | Chapter 8: Frequency Response Method 8.1 Introduction to Frequency Response 8.3 Bode Plot Basics | | | | 10 | Chapter 8: Frequency Response Method 8.4. Polar Plots for Transfer Functions 8.5 Construction of Transfer Functions from Bode plots | | | | 11 | Chapter 9: Stabilty in Frequency Domain 9.1 Introduction 9.2 Contour Mapping from s-Plane to F(s)-Plane | | | | 12 | Chapter 9: Stabilty in Frequency Domain 9.4 Nyquist Stability Criterion 9.5 Relative Stabilities - Stability Margins | | | | 13 | Chapter 9: Stabilty in Frequency Domain 9.6 Stabilty Margins and System Performance | | | | 14 | Chapter 10: Design of Feedback Systems 10.1 The Frequency-Response Design Method 10.2. Feedback Compensation Design Loop Gain Shaping Method PID Compensation Design Lead-Lag Compensation Design | | | | 15 | Chapter 10: Design of Feedback Systems 10.3 Design Examples 10.4 Design Verification | | | | 구분 | 문항 | 비고 | |--------|--|------| | 자기평가 | 1.나는 이 강의에 적극적으로 참여하였다.
2.나는 이 강의를 수강하는 동안 충분한 노력을 하였다. | | | 필수문항 | 3.강의계획서는 강의운영에 대한 상세한 정보를 담고 있었다.
4.교수는 강의계획서에 따라 강의를 진행하였다.
5.교수는 첫 시간에 강의계획을 명확하게 전달하였다.
6.교수는 강의 시작 때 항상 수업목표를 통지하였다.
7.교수는 학생이 강의내용에 흥미를 갖도록 지도하였다.
8.교수는 강의내용에 대한 전문성을 갖고 있었다.
9.교수는 학생의 수준을 고려하여 강의내용을 전달하였다.
10.교수는 학습내용의 특성에 맞는 다양한 수업방법을 사용하였다.
11.교수는 학생의 질문을 유도하고 적절하게 답변하였다.
12.교수는 강의내용의 심화 및 확대를 위한 과제를 제시하였다.
13.교수는 학생의 과제 및 평가에 대해 피드백(중간설문 내용 포함)을 제공하였다.
14.이 강의는 전반적으로 만족스러워 다른 학생에게 추천하고 싶다.
15.이 강의는 [핵심역량]을 키우는데 도움이 되었다. | | | 교수선택문항 | I-1. 교수는 강의내용을 체계적으로 조직하여 설명하였다.
I-2. 교수는 학습내용의 전달을 위해 목소리의 강약과 완급을 조절하며 설명하였다. | 이론강의 | 수험부정행위시, 경북대학교 수험부정행위에관한처벌규정에 의거 그 정상에 따라 수험자격박탈, 근신, 유기·무기정학, 또는 제적 처분될 수 있으니, 각별히 유의하여 주시기 바람.