2021년 동서대학교 강의공개용 교육콘텐츠

수업계획서

◎ 강좌 개요

개발목적	토목환경공학을 전공하는 학생들은 대규모 프로젝트를 위한 계획, 조사, 설계, 시공 및 건설현장의 유지관리를 위해서 컴퓨터 기반의 체계가 필수적임. 이를 위하여 코딩 기법 및 범용 소프트웨어와 어플리케이션의 응용은 기본적인 요구사항임. 이를 위하여 다양한 조건에 대한 문제해결능력을 갖추어야 하며 교실수업의 여건상 제한 조건 및 학습방법의 효율을 고려하여 효과적인 교육이 되도록 콘텐츠를 개발하였음.						
강 좌 명	한 글	토목환경공학을 위한 수치해석					
	영 문	Numerical Analysis for Civil & Environmental Engineering					
강의주제	토목환경공학 분야의 실무에서 빈번하게 발생하고 해결해야 할 수학적 문제들을, 수학적 원리와 개념을 기본으로 한 실무적 해결기법인 수치해석의 다양한 주제로 콘텐츠를 구성 하였음. 강의에 포함된 주제는 다음과 같음. 수치해석의 개요, 오차해석, 방정식의 근, 선형 대수방정식계, 곡선적합, 수치적분, 수치미분임.						
강의개요	본 강의는 수학적 모델링과 코딩, 공학문제를 해결하기 위한 오차해석 등의 기본적인 개념 정립을 바탕으로 다양한 실무관련 문제를 해결하기 위한 주제로 구성됨. 주제별로 학습을 위한 목적과 이론적 설명을 자세히 하고 이를 바탕으로 기초예제의 풀이와 공학적 문제에 의 응용을 통하여 역량을 강화하고자 함.						
학습목표	본 콘텐츠에서는 공학분야 전반에 걸쳐 나타나는 각종 문제들을 수치해석적 기법을 이용하여 해결하고 장차 전공 관련 소프트웨어와 어플리케이션의 사용 및 필요한 경우 프로그램을 개발하기 위한 기초적인 능력을 배양하고자 함. 이를 통하여 지식탐구와 문제해결력의 역량을 함양할 수 있음.						

주차	주차명 (주제)	주차별 학습 목표	차시	콘텐츠 명	영상길이
1	수치해석 개요	수치해석의 필요성 이 해	1-1	수치해석 교과목 O/T	26:56
			1–2	Introduction	26:49
2	방정식의 근	구간 방법에 의한 방 정식의 풀이 방법 이 해	2-1	방정식의 근 - Motivation, 구간방법(1)	28:13
			2-2	방정식의 근 - 구간방법(2)	28:29
3	방정식의	개구간방법에 의한 방 정식의 풀이 방법 이 해	3–1	방정식의 근 - 개구간방법(1)	34:03
3	근		3–2	방정식의 근 - 개구간방법(2)	35:41
4	방정식의 근	방법의 종류에 따른 방정식의 풀이 비교	4–1	방정식의 근 - 개구간방법(3)	29:46

		분석	4-2	방정식의 근 - 구간방법과 개구간방법 비교	27:03
5	선형대수 방정식계	행렬 연산의 기본 방 법 이해	5–1	선형대수방정식계 - 행렬연산	29:23
			5–2	선형대수방정식계 - 행렬연산의 응용, Cramer 법칙	31:46
6	선형대수 방정식계	Gauss 소거법 적용을 위한 방법 이해	6–1	선형대수방정식계 - 미지수 소거법, Gauss 소거법	25:56
			6–2	선형대수방정식계 - Gauss 소거법의 함정	30:31
7	곡선적합	최적 적합 방법 및 최 적 판별조건 이해	7–1	곡선 적합 - 최적 적합 분석	27:17
			7–2	곡선 적합 - 선형 최소제곱법, 오차의 정량 화	28:19
8	중간고사	1~6주차 핵심정리	8-1	오차개념 정리	13:01
			8–2	방정식의 근, 선형대수방정식계 정리	12:11
9	곡선적합	다항식으로 회귀분석 방법 이해	9–1	곡선 적합 - 다항식 회귀분석(1)	25:59
9			9–2	곡선 적합 - 다항식 회귀분석(2)	27:11
10	곡선적합	비선형함수로 회귀분 석 방법 이해	10-1	곡선 적합 - 비선형 함수 회귀분석(1)	28:18
			10-2	곡선 적합 - 비선형 함수 회귀분석(2)	28:30
11	곡선적합	다항식 보간법의 원리 및 적용방법 이해	11-1	곡선 적합 - 다항식 보간법(1)	29:51
11			11-2	곡선 적합 - 다항식 보간법(2)	30:55
10	수치적분	수치적분을 위한 기본 개념 이해	12-1	수치적분 - Newton Cotes의 적분공식	27:35
12			12-2	수치적분 - 사다리꼴 적분공식	26:20
13	수치적분	Simpson 적분공식에 의한 수치적분 방법 이해	13-1	수치적분 - Simpson 적분공식(1)	28:43
			13-2	수치적분 - Simpson 적분공식(2)	26:44
14	수치미분	수치미분의 기본 개념	14-1	수치미분 - Taylor 급수전개	29:02
		및 적용 방법 이해	14-2	수치미분 - 수치미분	26:55
15	기말고사	7주차 & 9~14주차 핵 심정리	15-1	Taylor 급수의 오차 정리	11:59
			15–2		13:38