강의공개 신청서

교수정보					
이름	국문	국문 정성훈			
	영문 Sunghun Jung				
소속대학	조선대학교		조선대학교	소속학부 (전공)	
연락처			휴대폰		
이메일					
과목정보					
과목명	국문	공학의기본과이해			
	영문	영문 Basics and Understanding of Engineering			
학점		(3)학점	제작년도 운영년도/학기	2022 (2022) 년도 (1) 학기	
이수구분	교양필수		과목코드	45403	
구분	동영상있음 (O) 강의자료있음(X)		강의주차 수 (총 차시 수)	15	
비고					

^{*} 강의공개는 최소 10주차 이상공개를 원칙으로 하며 강좌에 포함되는 영상, 이미지, 폰트 등의 저작권 검토 후 제출 해주시기 바랍니다.

강의 계획서(강의소개)

교과목개요 (강의소개)				
교재 및 참고문헌	Jonathan Wickert and Kempler Lewis, 기계공학개론(4판), 센게이지러닝코리아, 2016			
주별	강의 주제			
	강의 내용			
1주 2주	기계공학자와 그들이 하는일이 무엇인지 그리고 그들이			
	할 수 있는 영향에 대해 설명 1. 기계공학자			
	1.1 서론			
	1.2 공학은 무엇인가?			
	1.3 누가 기계공학자인가?			
	기계설계 프로세스에 필요한 주요 단계 요약 2. 기계설계			
	2. 기계 길게 2.1 서론			
	2.2 설계과정			
	2.3 제조공정			
	공학문제를 해석하고 풀이하는 기본과정 이해			
. 7	3. 문제해결 기술과 의사소통 기술 3.1 서론			
3주	3.2 일반적 문제해결 방법			
	3.3 단위계와 변환			
	3.4 유효숫자			
	공학문제를 해석하고 풀이하는 기본과정 이해 3.문제해결 기술과 의사소통 기술			
4주	3.5 차원 일치			
5주	3.6 공학적 추정			
	3.7 의사소통 기술			
	힘을 직각좌표 성분과 극좌표 성분들로 분해하기			
	4. 구조물과 기계류에서의 힘 4.1서론			
	4.2 직각좌표 형태와 극좌표 형태			
	4.3 여러 힘의 합력			
6주	힘을 직각좌표 성분과 극좌표 성분들로 분해하기			
	4. 구조물과 기계류에서의 힘 4.4 힘의 모멘트			
	4.5 힘과 모멘트의 평형			
7주	힘을 직각좌표 성분과 극좌표 성분들로 분해하기			
	4.6 설계 적용: 구름 베어링			
8주	기계요소에 인장력, 압축력 또는 전단력이 작용하는 상			
	황 이해 및 응력 계산			
	5. 재료와 응력			

	5.1서론			
	5.2 인장과 압축 5.3 재료 반응			
	0.5 새료 만등 기계요소에 인장력, 압축력 또는 전단력이 작용하는 상			
	황 이해 및 응력 계산			
	5. 재료와 응력			
9주	5.4 전단력			
	5.5 공업용 재료			
	5.6 안전계수			
	유체공학의 미소유체소자학, 공기역학, 스포츠 기술 및			
10주	제약 같은 다양한 분야 응용 이해			
	6. 유체공학			
	6.1 서론			
	6.2 유체의 특성			
	6.3 압력과 부력			
	유체공학의 미소유체소자학, 공기역학, 스포츠 기술 및			
	제약 같은 다양한 분야 응용 이해			
44.7	6. 유체공학			
11주	6.4 층류 유동과 난류 유동			
	6.5 관 내 유동 6.6 항력			
	6.7 양력			
	기계공학에서 다루는 여러가지 에너지, 열, 일, 동력 계			
	산과 SI단위계로 이 값들의 표현			
	7. 열에너지 시스템			
12주	7.1 서론			
	7.2 기계에너지, 일 및 동력			
	7.3 에너지로 천이되는 열			
	7.4 에너지 보존과 변환			
	기계공학에서 다루는 여러가지 에너지, 열, 일, 동력 계			
	산과 SI단위계로 이 값들의 표현			
13주	7. 열에너지 시스템			
	7.5 열기관과 효율			
	7.6 내연기관			
	7.7 전력발생			
	전속도, 일 및 동력을 수반하는 계산 수행			
	8. 운동 및 동력전달			
14주 15주	8.1 서론			
	8.2 회전운동 8.3 설계응용: 기어			
	8.4 기어세트의 속도, 토크 및 동력			
	전속도, 일 및 동력을 수반하는 계산 수행			
	8. 운동 및 동력전달 8.5 단순 기어열과 복합 기어열			
	8.6 설계응용: 벨트 및 체인 구동장치			
	8.7 유성 기어열			
	[0.7 11] 6 기학년			