경영학 경제학을 위한 수학

박종일, 강혜정 (서울대)

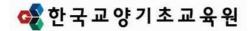
■ 교육과정 개발의 기본원칙

- 현행 고등학교 교육과정을 이수한 경상계열, 인문사회계열 학생이 1학년 때 수강하는 데 어려움이 없어 야 한다. 이를 위하여 현행 고등학교 교육과정에 대한 철저한 분석이 필요하다. 2012년 이후 고등학교 를 졸업한 문과학생은 그 전의 학생보다 더 많은 수학적 지식과 기법을 갖추고 있다는 사실을 적극 활용 한다.
- 학문의 도구로서의 수학을 지향하되, 지나치게 도구의 성격 또는 응용의 측면을 강조하여 논리적으로 엄밀한 수학적 사고의 가치와 아름다움, 인류문명에 대한 수학의 기여 등 수학에 대한 문화적 이해를 소홀히 하는 것은 지양한다.
- 그래프, 그림, 보기 등을 활용하여 관련 개념에 대한 직관적인 이해를 돕는 한편, 일정 분량 이상의 엄밀한 증명, 계산문제, 증명문제 등을 포함시켜서 논리적 사고력과 계산능력을 키운다.
- 다양한 보기를 통하여 동기를 부여하고 흥미를 유발하며, 개념의 정확한 이해, 논리적 사고능력, 계산능력, 응용능력 등을 향상시킨다. 실제 상황에 수학이 어떻게 응용되는가를 보여주는 보기, 특정 대상을 정의할 때 개념의 이해를 돕는 보기, 정리의 응용사례를 보여주는 보기, 정리를 논리적으로 보완하는 보기, 모범적인 계산과 증명 또는 문제풀이를 보여주는 보기 등이 균형 있게 포함되어야 한다.
- 연습문제를 통하여 개념의 이해, 계산의 숙달, 논리적 사고능력의 향상 등을 돕는다. 단순계산을 다루는 것부터 어느 정도의 시행착오를 거쳐야만 해결할 수 있는 것까지 다양한 난이도의 문제를 포함시킨다. 그러나 수강생의 능력을 고려하여, 지나치게 어려운 문제는 피하는 것이 바람직하다.
- 수학적 방법론의 근원적인 한계에 대하여 적절한 수준으로 설명한다. 수학을 실제 상황에 응용할 때, 이해를 돕기 위하여 인공적으로 만든 보기에 비해서 변수의 개수, 계산의 복잡도 등이 엄청나게 커질 수 있음을 실감케 하고, 인간 능력의 한계 때문에 실제 상황에서는 많은 경우 전자계산기나 컴퓨터 프로그램을 사용함을 설명한다.
- 참값이 아닌 근삿값을 사용할 수밖에 없는 전자계산기의 특성 및 이에 따른 한계, 수학을 실제 상황에 응용하기 위해서는 필연적으로 상황을 단순화해야 하는데, 이에 따른 문제점과 한계에 대하여 적절한 설명이 포함되어야 한다.

■ 강의계획서 작성

- 경영학, 경제학을 전공하는 학생들을 대상으로 하지만 1학년 학생이 수강하는 교과목이므로 전공에 대한 배경지식은 없다고 가정하여야 한다. 전공에서 공통적으로 나타나는 수학적 개념과 방법을 추출하여 이를 논리적으로 이해할 수 있도록 하여야 한다. 구체적으로 교과과정을 구성하는 데에 다음과 같은 원칙을 적용한다.
- 대학교 1학년 학생들이 한 학기 동안 소화할 수 있는 수준의 수학 내용을 제공하며 경영학, 경제학의

🚅 한국교양기초교육원


이론을 설명하는 것보다 수학적 개념을 이해시키는 것이 중요 (수학 > 경영, 경제)

- 수학적 기술(technology) 보다 수학적 개념과 직관 중시 (수학적인 아이디어가 왜 그리고 어떻게 작용하는지에 중점을 둠)
- 수학적으로 중요한 내용은 증명을 제공하며 이를 통하여 논리력을 향상시킬 수 있도록 함
- 수학적인 개념을 구체적인 보기를 통하여 설명
- 보기는 경제, 또는 경영의 모델에서 선택하되 가능한 한 학생들에게 쉽고 익숙한 것을 사용 (모델 자체가 어려운 복잡한 것은 지양)
- 경제수학, 또는 경영수학에서는 다변수함수와 최적화문제를 중점적으로 다루므로 일변수함수의 미적분, 최적화, 행렬대수를 중점적으로 다룸
- 다변수함수에 관련된 내용은 부록으로 만들어 선택할 수 있도록 구성

	강의 번호	강의 주제	상세 강의 내용
	1강	여러 가지 함수	선형함수, 무한대, 비용함수, 수입함수, 이차함수, 수요함수, 유 리함수, 수평점근선, 수직점근선
	2강	지수함수와 로그함수	지수함수의 성질, 실효이율, 자연상수 e , 연속복리, 할인률, 로그함수의 성질, 자연로그
	3강	함수의 극한과 연속 성	극한법칙, 좌극한과 우극한, 부정형의 계산, 압축정리, 연속함수, 중간값 정리, 최댓값·최솟값 정리
	4강	도함수와 선형근사	평균변화율, 순간변화율, 미분가능성, 국소적 선형성, 접선의 방정식, 선형근사, 도함수, 미분법칙, 고계도함수
	5강	연쇄법칙과 음함수정 리	연쇄법칙, 음함수 미분법, 역함수정리
	6강	지수함수와 로그함수 의 도함수	자연상수, 지수함수의 도함수, 로그함수의 도함수, 로그미분법, 현재가치
	7강	도함수의 성질	롤의 정리, 평균값 정리, 도함수와 함수의 증감, 극댓값과 극솟값, 로피탈의 법칙
	8강	함수의 그래프	함수의 볼록성, 변곡점, 이계도함수 판정법, 그래프 그리기
	9강	최적화 문제	최댓값과 최솟값(지수함수와 로그함수 응용)
	10강	미분의 경제학에의 응용	한계비용함수, 이윤의 극대화, 평균비용함수, 콥-더글라스 모형, 탄력성
	11강	부정적분과 적분기법	부정적분(기본함수), 치환적분, 부분적분
	12강	정적분	정적분과 넓이, 정적분의 정의, 정적분의 성질, 미적분의 기본정리, 정적분의 계산, 조각적으로 정의된 함수, 한계함수와 총함수

☞ 한국교양기초교육원

강의 번호	강의 주제	상세 강의 내용
13강	특이적분, 경제적 응 용	무한구간에서 정의된 특이적분, 불연속함수의 특이적분, 비교판정법, 연속흐름
14강	미분방정식	미분방정식의 해, 초깃값문제, 변수분리형, 자연성장과 자연감소, 뉴턴의 냉각법칙
15강	미분방정식1	선형미분방정식, 적분인자, 혼합문제, 연속복리, 시장가격의 결정모형,
16강	미분방정식2	로지스틱모형, 자율방정식, 위상도, 수확모형
17강	수열과 차분방정식	수열의 기본성질, 점화식, 수열의 극한값과 평형점, 거미줄도형, 평형점의 안정성, 미분계수 판정법
18강	무한급수	급수의 기본성질, 비교/비율/적분 및 교대급수 판정법
19강	멱급수	역급수의 정의 및 수렴반경, 멱급수의 미분과 적분, 멱급수의 표현, 지수함수의 멱급수
20강	테일러급수	선형근사식과 근사다항식, 테일러 급수, 테일러 정리, 테일러 급수 구하기, 테일러 급수의 응용
21강	좌표공간과 벡터	좌표공간, 위치벡터, 표준단위벡터, 벡터의 크기,벡터의 연산
22강	벡터의 내적	내적, 정사영, 코시-슈바르쯔 부등식
23강	직선과 평면	직선의 방정식, 평면의 방정식, 법선벡터, 점과 평면 사이의 거리
24강	행렬의 연산	행렬의 합, 차, 스칼라곱, 행렬곱, 특수한 행렬(정방행렬, 대각행렬, 단위행렬, 삼각행렬, 전치행렬, 대칭행렬), trace
25강	행렬과 연립방정식계	선형방정식계, 기본행연산, 기본행렬, 기약행사다리꼴, 선형계의 해집합, 가우스소거법, 자원의 분배, 망분석
26강	역행렬	역행렬의 정의, 기본행렬의 역행렬, 역행렬의 성질, 선형계와 역행렬, 역행렬 구하기, 일차독립(일차종속)
27강	행렬의 응용과 일차 독립	투입산출모형, 열린 경제모형, 생산적인 경제 구조, 일차독립
28강	행렬식	행렬식과 넓이, 여인수전개, 삼각행렬의 행렬식, 행연산과 행렬식, 가역행렬의 행렬식, 행렬식의 성질
29강	특성치와 특성벡터	특성치, 특성벡터, 특성방정식, 특성치의 성질, 특성치와 행렬식

강의 번호	강의 주제	상세 강의 내용
30강	점화계와 마코프연쇄	점화계와 특성벡터, 확률벡터와 추이행렬, 극한안정분포, 이계점화식

■ 강의 VOD 및 연습문제 VOD 제작

- 표준교과과정은 1학기 15주 수업을 기준으로 하며 한 주의 수업은 수업 두 시간과 연습 두 시간으로 구성되어 있다.
- VOD는 평균 30분 분량으로 강의 VOD 30회분, 연습문제 VOD 30회분을 제작하였으며 하나의 강의 VOD에 하나의 연습문제 VOD가 제작되었으며 연습문제는 강의의 내용을 보충, 연습할 수 있도록 제작되었다.